
Calhoun: The NPS Institutional Archive

DSpace Repository

Reports and Technical Reports All Technical Reports Collection

1976-04

The influence of data order on the

Lieberman-Ross method

Schoenstadt, Arthur L.

Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/29351

Downloaded from NPS Archive: Calhoun



HAVAI
MON1

NPS-53Zh76047

//
NAVAL POSTGRADUATE SCHOOL

Monterey, California

THE INFLUENCE OF DATA ORDER ON THE
LIEBERMAN-ROSS METHOD

by

Arthur L. Schoenstadt

April 1976

Approved for public release; distribution unlimited

Prepared for:

Chief of Naval Research, Arlington, VA 22217

FEDDOCS
D 208.14/2:NPS-53ZH76047



NAVAL POSTGRADUATE SCHOOL
Monterey, California

Rear Admiral Isham Linder Jack R. Borsting
Superintendent Provost

The work reported herein was supported by the Foundation Research
Program of the Naval Postgraduate School with funds provided by the Chief
of Naval Research.

Reproduction of all or part of this report is authorized.

This report was prepared by:

/-
Robert R. Fossum
Dean of Research



UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

t. REPORT NUMBER

NPS-53Zh76047
2. GOVT ACCESSION NO 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle)

THE INFLUENCE OF DATA ORDER ON THE LIEBERMAN-
ROSS METHOD

5. TYPE OF REPORT A PERIOD COVERED

Final-October 1975-December
1975

6. PERFORMING ORG. REPORT NUMBER

7. AUTHORS

Arthur L. Schoenstadt

B. CONTRACT OR GRANT NUMBERfaJ

N6685676WR00012

9. PERFORMING ORGANIZATION NAME AND ADDRESS

Naval Postgraduate School
Monterey, CA 93940

10. PROGRAM ELEMENT. PROJECT, TASK
AREA & WORK UNIT NUMBERS

11. CONTROLLING OFFICE NAME AND ADDRESS

Chief of Naval Research
Arlington, VA 22217

14. MONITORING AGENCY NAME 4 ADDRESS^/ different from Controlling Office)

12. REPORT DATE

April 1976
13. NUMBER OF PAGES

42
15. SECURITY CLASS, (of thla report)

UNCLASSIFIED

15a. DECLASSIFICATION/ DOWN GRADING
SCHEDULE

16. DISTRIBUTION ST ATEMENT (of this Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the eb. tract entered In Block 20, It different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reveree aide It neceeeary and Identity by block number)

Lieberman-Ross Method
Reliability
Simulation

20. ABSTRACT (Continue on reveree aide If neceeeary and Identity by block number)

A statistically exact procedure for producing lower bounds on the re-
liability of a parallel system of independent, exponentially failing compon-
ents has been produced by Lieberman and Ross. This method uses individual
component failure data to estimate system characteristics. The method has
the drawback that permuting the order in which components fail (but not the
inter-failure times), can alter the estimated bound, i.e., the estimates are
Data Order Dependent . In this paper we investigate this dependence of the

DD FORM
1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

S/N 0102-014-6601
|

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGe (When Data Entered)



UNCLASSIFIED
-LCUW1TY CLASSIFICATION OF THIS PAGEfWhan Dmtm En(.r.d)

20. (cont'd)

estimates, and consider the effects of a prior ordering.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(TW>«n Data Bnfrmd)



TABLE OF CONTENTS

I. INTRODUCTION 1

II. ANALYSIS OF THE LR METHOD - TWO COMPONENT CASE 4

III. DESCRIPTION OF THE SIMULATION FOR LR TEST 10

IV. THE EFFECT OF LOST DATA ON THE LR METHOD 13

V. SUMMARY AND CONCLUSIONS 18

ACKNOWLEDGMENTS 19

REFERENCES 20

TABLES 21

FIGURES 22



I . INTRODUCTION

The reliability of a system composed of N statistically independent

components, is defined:

R(T ) = Probability (T > T )o J — o

where T denotes the time of first system failure. A significant practical

problem is that it is often reasonably easy, and comparatively inexpensive,

to determine information about the reliability of separate components,

denoted R (T ), i=l,2 N , but fairly difficult and extremely

expensive to determine total system reliability directly, since failure

testing often destroys the system.

In the most common analytically treated case each of the component

types has an assumed exponential failure rate, i.e.,

-XT
R
±
(T

o
) = e

X °
, 1-1,2, .... N , (1)

the system reliability is given by

N
-XT -r-^

R(T
q

) = e °
, X =2^ X

±
(2)

1=1

and a statistically exact procedure for obtaining an upper bound on A

from data on component failures, called the LR procedure, has been develop-

ed by Lieberman and Ross [1]. In this procedure k items of each type

component, with individual observed failure times T. ., i=l,2, ..., N and

j=l,2, ..., k. are tested. (We shall assume without loss of generality

that k. <_ k ..- , j=l,2, ..., N-l.) A time U is defined:



k
i
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i.e., U is the cumulative time at which one first exhausts all the com-

ponents of one type. The number of each type of component which has been

used up to this time is given by:

J

n
i " {larSest J i k

i I ^ T
i* " U

*in
K (4>
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Then, if

N

K=^n
±

(5)

i=l

(i.e., total components used), Lieberman and Ross showed that 2XU follows

2
the Xou- distribution; hence upper bounds for A can be estimated.

A major drawback of the LR technique is that in using K as defined

by (4)-(5), one discards the "information" known about the

N

NL =Y^ {kj-n^ (6)

i=l

components which do not fail by the time U.

An immediate consequence of (A) is that the LR procedure is Data-

Order Dependent . By this we mean that permuting the second subscript on

T . (i.e., in essence permuting the order in which the failures are

observed) can alter n. , and hence the estimated bound. For example,

consider the following hypothetical observed inter-failure times in two

tests:



Test A

Test B

Component #1: T =0.75 , T . 0.25

Component #2: T =0.80 , T - 1.25

Component #1: T = 0.25 , T - - 0.75

Component #2: T = 1.25 , T - = 0.80

Observe the data are identical except for their order (i.e., which values

are associated with which second subscripts), and U 1.00 in both tests,

however K = 3 in Test A but only K = 2 in Test B. This leads to upper

bounds (at the 95% confidence level) for X of 6.30 and 4.75 respectively.

This dependence on the order in which the second subscript of the T . are

assigned causes a potentially wide variance in the bounds for X for the

identical set of individual component failure data. This can lead to

significant practical problems, for often interfallure data on individual

components is presented with no reference as to the order in which the

failures occurred. Thus there is no preferred ordering, and the analyst

is faced with the formidable task of deciding on the "best" way to assign

the T J . .

ij

We shall investigate, using analytic and simulation techniques, the

impact of this ordering, and other parameters, on the mean and variance

of the bounds produced for X .



II. ANALYSIS OF THE LR METHOD - TWO COMPONENT CASE

Each application of the LR procedure to a given set of data involves

a simultaneous observation of two random variables - the discrete random

variable K , and the continuous random variable U. Given the confidence

level, a , desired, then the estimated bound for A ,

X2K
(a)

b 2U

is itself a random variable, formed as the ratio of two random variables,

2
since the Xov(a ) value can be considered a discrete random variable with

the same number of realizable values as K , and, except for different

sample values, the same probability law. (It is easily seen that for a

given set of failure times, T , , the effect of permutation of the data

is to alter the value of K , not U .) Thus, we start by considering the

properties of the random variable A when the system consists of two

components.

A key step in Lieberman and Ross 1 paper is their defining a binomial

random variable, J * , where

1 with probability A /(A +A.)

J * - <

12 with probability *
2
^ X

1
+X 2^ »

and showing that J * has the same probability law as the expected failure

pattern of the type 1 and 2 components. Thus, they show the unconditional

probability density function for K is:
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(Note there is an obvious misprint in this formula in the original paper.)

The LR procedure arises from this observation, plus the well-known result

that U has the conditional density function

(yy* k_ 1
-cx1+x 2

)u
f
U|K-k

(u) =
(k-l)l

U 6 (8)

But, it follows immediately that X, has the conditional density function:
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and thus the conditional mean:
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where t = —jr . Observe then:
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k - 1 .

Since the (unconditional) mean value of the upper bounds is:

k1+k2
-l

E(*
b

) = Y^ E(X
b
|K=k)P(k-k) , (11)

k-^

it follows that, unless k n 2 , E(X ) = « . In fact, the following
l b

proposition is an immediate consequence.

t*Vi

Proposition: For k. <_ k~ , the k-— moment of X, (the Lieberman

and Ross upper bound to X) will be unbounded.

Note also from (10) and (11) , that when k
1

>^ 2 ,

k
1
+k

2
-l

2

E(V * X
\ Xj ^t=T)

P(K=k)
|
= X E([x

2
^(a)/2(k-l)]). (12)

It may be observed from the expression for P(K=k) in equation (7) that

E(X ) depends, not on X , but on X /X , since P(K=k) depends on this
b 1 <-

ratio. Thus we have shown:

Theorem : Given k, , k- and X./X , the mean estimate for X,————

—

1 2. 1 £ D

produced by the Lieberman and Ross technique will be the same constant

percentage of X , independent of the value of X ,

The r conditional moment of X^ is given by

E(X*|K«k) = X
1

D

X2k
(a)

(fc-r-1) I
I < r < k m}

(k-1) !
*

± ~ r - k
*

UJ;



In particular,

i-l)
2
(k-2))

'°l lK-k " ^ J"

Figure 1 shows {E(X |K=k)/X} and {a, /A} for a representative
b A

b|K=k

range of values of k . Note that for k > 10 the variation in the mean

value is quite small. The above results easily generalize to the case of

more than two component types.

As noted in the introduction, the "lost" data in the LR method is

represented by those components which have not failed by U . (See

equation (6)). Except in the case of simultaneous failure of all component

types at U , there will be at least one component left of each type except

one. Also, the LR method requires use of 100% of the data for one component

type, hence the number of this type of component should not be included in

any measure of relative data loss. Based on this discussion, we shall

define the percentage data loss in any application of the LR method as

PL -\L (w I' g k
i • (13)

ii*f

where f is the index of the component type which was 100% exhausted,

i.e., n
f

= k
f , and NL was defined by (6).



In the two component case, the mean of PL can be computed fairly

straightforwardly from (7). Observe that the unconditional probability

that the first type of component terminates the test is :

k1+k2
-l

- s fewr
k -1

(k^k-1) ! / X \k
[

. (14)
(k.,-1)! \X 1 +X / /_^ k! \ x

1
+x

2

But the conditional density function for n„ , given f=l , is:

P<vk|f.x) .Q-1V^n^y
lnt.1)f

i
. (15)

Thus the conditional expectation on n_ is

""'"-" tC^W ""-»'-'• ••

A similar expression is derivable for E(n. |f=2). Thus, based on (13),

we see that the expected data loss for the two component case is:

(k
1
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1
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)
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(Note (17) is a function solely of k. , k and \ l\ .)

Figure 2 shows curves for several combinations of k , and k . Observe

that each curve appears to have a unique minimum, occuring at or near the

point

A_k

Ik = 1 (18)
A
l
k
2

i.e., when both subsystems have the same expected life before exhaustion.

Therefore we also plotted the percentage of lost data as a function of

and this is displayed in Figure 3. We would conjecture that the minimum

data loss occurs when (18) is satisfied, and the curves indicate a

monotonicity in terms of total number of components, but we cannot show

this conjecture analytically.

Expanding (17) to cover n > 2 , while possible, is computationally

less useful since multiple series become involved.



III. DESCRIPTION OF THE SIMULATION FOR LR TEST

As part of this study, a simulation model was developed to generate

individual component failure data, and perform the statistical analyses of

the basis LR procedure. The programs were all written in FORTRAN IV, and

run on the IBM 360/67 at NPS, using certain subroutines from both the NPS

and IMSL libraries.

The simulation was developed to consider up to twenty different

individual components of each of six different types. Individual components

of the same type are assumed to be i.l.d, and the serial failure of all

components of a type terminates the test. The simulation initially

generates 120 shuffled random numbers, distributed exponentially with X=l.

The subroutine package LLRANDOM, as described in [2], is used. These

numbers are then divided into blocks of twenty, and each block adjusted to

produce exponentially distributed failures with X=X. (1*1,2, . . . , 6) by

dividing by X . Then, for each component type, cumulative failure data

is constructed from the individual component failure times. From this

data, the first component type to be exhausted is determined, and the

number of components of each of the other types that have failed up to that

time, is also determined. With this data, the quantities U and 2K

needed for the LR test are determined, and the estimated bound for X is

computed using the subroutine PRCHI from the IMSL package to compute the

inverse chi-square table.

At this time, the routine also collects statistics on the unused

data. Specifically, it computes the percentage of usable data lost, defined

by (13) . Repeated iterations (normally 300) of the simulation are run for

each choise of k and X . At the completion of these iterations,

10



additional statistics are compiled on the mean, variance and 100a% level

of the estimates on reliability obtained from the individual trials.

Initial testing and validation of the simulation was carried out for

the two component (N=2) case. Runs were made with various combinations of

values for X , X , k and k_ (Table 1). Each run consisted of 300

iterations of the LR procedure, where each iteration consisted of generating

one set of T ,
' s and the corresponding LR estimate for X . Each set of

pseudo-random failure times was used only once, and without any reordering.

Validation consisted of comparing the results of several simulations to

predicted values. First was the comparison of the 100(l-a)% estimate of

reliability to the true reliability. Since the LR procedure is an exact

bound for X , and since, in these tests, we used an a=.95 confidence

level, we expected that on each run, 95% of the bounds would fall above the

true lambda. Thus, after each iteration, we ordered the bounds on X in

increasing order, and chose the 15th (out of 300). The ratio of this

value to the true reliability, X = (X + X ) was computed, and compared

to unity. Figure 4 shows, as a function of X , the scatter diagram of

ratios obtained for runs.

The second comparison made was between the mean value of the X that

were computed in the simulation and the theoretical mean predicted by

equation (12). The results of this comparison are shown in Figure 5, where

the X (the actual X used to generate the data) is plotted on the

horizontal axis, and the vertical axis displays the ratio:

VE(V
where: X, is the (arithmetic) mean of the computed upper bounds and

b

11



E(X ) is the theoretical mean, (12).
D

The final comparison made was between the average actual data loss in

a run, and the expected data loss predicted by (17). The result of this

comparison are shown in Figure 6, where X is on the horizontal axis and

(PL/E(PL)) is on the vertical. Here PL denotes the (arithmetic) mean

percentage of data lost in the iterations of a run, and E(PL) is as given

in (17).

As can be seen from Figures 4-6, the simulated values were all in

acceptable agreement with the predicted ones, and therefore, we concluded

the simulation itself is valid.

12



IV. THE EFFECT OF LOST DATA ON THE LR METHOD

With the simulation, as described in Section III debugged and validated,

we proceeded to investigate the effect of lost data on the LR method. This

investigation proceeded along two major lines. First was consideration of

the effect when no prior ordering of the data was used, i.e., the basic LR

method. In this instance we were particularly interested in any relation-

ship that might exist between the percentage of data lost and the accuracy

of the bound, A , derived. Our second consideration was the effect on
b

the estimated bounds of a priori ordering of the data, e.g., ordering in

order of increasing inter-failure times. As noted in the introduction,

such methods will produce biased estimates for the bounds, and a major

concern is whether the variance of the bounds is smaller than that of the

standard LR method, and whether the bias is predictable.

To investigate the relation between the lost data and the accuracy of

the LR bound, the simulation was programmed to produce, at the end of each

run, a scatter diagram showing the relative accuracy of the estimate

(A, /A .) versus the percentage of lost data on each iterations. The number

of iterations was increased so that each run consisted of 500 iterations.

Several representative such diagrams are shown at Figures 7-12. Although

each case evidenced some "tightening" of the group of estimates as the

percentage of lost data decreased, the magnitude of this effect is really

noticeable only when the total sample is small. This, of course, relates

to the fact that the most rapid changes in Figure 1 occur for K <_ 7 . It

is also worth noting that the amount of scatter tended to decrease for

(k..A „/k„A ) — 1.0 . Again this seems intuitively clear.

13



To study the effect of ordering, the program was modified so that

after the individual component interfailure times were generated, they were

rearranged into increasing order. This clearly will produce a biased high

upper bound, since it, in effect, includes only the least reliable compon-

ents in satisfying:

n
±

E T
ij - u

•

k=l

Figures 13-15 display the consolidated results of 370 runs of 300

iterations each, with a run corresponding to different values of k. , k_,

A and A . Note that in each of these graphs the horizontal variable is

chosen as

l

l
k
2

X
2
k
l)

l

2
k
l

' X
l
k
2|

'L
i2

= min
i"x7r"

'
~^~' » (19)

rather than A = (A- + A ) . The reason for this was that, after some

reflection, we felt that the reordering described here should have decreas-

ing effect as L. ~ deviated from unity. (Note that L - simply reflects

the ratio of expected failure times for all the components of each

individual type.) The general trend in these figures is consistent with

our expectations, i.e., the bounds for A (denoted A ) are consistently

biased higher than their counterparts in the unordered case (Figures 13-14),

and the average data loss is consistently less than in the unordered case.

However, on close inspection, observe that the dispersion in Figure 13

seems more marked than that in the unordered case (Figure 4) , and more

pronounced near L
1?

=0. This we had not expected, and therefore was in-

vestigated in some more detail.

14



After some consideration, we decided that the accentuated spreading

(especially near L..
9
=0) arose primarily from the tendency of the expo-

nential distribution to produce some highly unreliable components (i.e.,

T . ~ 0), which could produce a marked variation in estimates for tests

with small numbers of components. To confirm that this apparent increased

spreading is actual, in Figures 16-17 we compared dispersions of the

estimates in the ordered scheme with those in the unordered scheme. Spec-

ifically, for each iteration of each run, bounds for A were produced,

both using prior ordering (denoted by A,.), and without prior ordering
bi

(denoted A, .). Then, for each run the ratios of actual magnitudes of
bi

variances observed:

R
» ism"/) - E

2a
bV!

*

and the ratio of relative variances:

R = R
r m

A°A
b

(21)

were computed, where the usual estimates are used, e.g.,

300

E < xbi> " Kt " 35o E x
bi

• (22 >

i=l

Finally, as a function of L-
2

, we plotted Sr~ (Figure 16) and v^R~

(Figure 17). As expected, for all intents, Jr~ always exceed unity.

That is, the actual variance of the ordered scheme exceeded that of the

15



unordered scheme. Furthermore, the relative variance of the ordered scheme

exceeded even the relative variance of the unordered scheme a significant

portion of the time when L.. ~ > 0.5 . As we noted, for small L-
2

the

expected effect of ordering should be less noticeable, and we attribute the

fact that the relative variance here, as given by (21), did not exceed

unity primarily to the fact that X > X .

Figures 13-17 do not seem to indicate that a priori arrangement of

the component failure data in order increasing interfailure time offers

any significant improvement over random ordering, largely because the

variances displayed in Figure 14 suggest that prediction of the bias in-

troduced by the ordering is not predictable. (Actually, this comment must

be strongly qualified, since in Figure 14 we have expressed the variance

based on the single parameter, L
12

. It is still quite possible that a

more predictable relation could emerge were we to retain k_ , k_ and

(X,/X_) as three independent parameters.)

We also feel that any other a priori ordering algorithm will be no

more successful in producing lower variance bounds as long as one attempts

to predict the bias using a single parameter. There are, however, two

other possibilities that should be investigated. One, as noted above, is

to include several parameters in the prediction. The second is to

recognize that every different ordering of the data produces an estimated

bound, and each is, statistically, equally valid. This observation means

that each LR test produces data which yield several samples from the same

population. The implication is then that one should consider all the

possible bounds that can be estimated from all the different possible

orderings of the data. Thus, for example, the data in section I should be

16



viewed as yielding that both 6.30 and 4.75 are 95% confidence (upper)

bounds on X , and this is certainly stronger than the statement that

either one alone is such a bound. (Note it might be argued that this will

produce an unmanageably large number of samples when the number of failed

components is large. However, as reference to Figure 1 indicates, where

the number of failed components is large, the variance on all the bounds

is small, and so some randomly chosen smaller sample could be used.)

17



V. SUMMARY AND CONCLUSIONS

Given a set of component interfailure times to be converted into an

estimate on system reliability by the Lieberman-Ross technique, it is well-

known that one parameter ("U") needed for the procedure is uniquely deter-

mined, irrespective of the order of the data, while the value of the second

parameter ("K") is data order dependent and not uniquely determined.

Furthermore, the design of the LR procedure requires that, in general,

some relevant, valid data be discarded. The purpose of this paper was to

consider the effects of this "lost" data and the data order.

Since the data order determines the degrees of freedom for the chi-

square test, we considered the distribution of estimated bounds on X

produced for a fixed degree of freedom. Formulas were presented for the

mean and variance of these bounds, and these were shown to be constant

percentages of X for fixed K . We also programmed a simulation to

investigate the impact of a priori ordering of the failure data. The

ordering we chose was in order of increasing interfailure time (least

reliable first), which is equivalent to including maximum data. The results

of this simulation showed that this a priori ordering not only produced

biased bounds for X , but, expressed in terms of the single parameter

(LL/LL), these estimated bounds were more dispersed than the estimates

produced without prior ordering. Thus we concluded it appears that a

priori ordering offers no improvement over the basis LR procedure, as long

as one attempts to predict the resultant bias in terms of a single

parameter. In future investigations we hope to consider both multi-

parameter prediction of the prior ordering bias, and improvement in the

estimated bounds possible by utilizing several reorderings of the data.

18
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TABLE 1

k
l

k
2

VALUES OF X.
t

2 2 0.001, 0.005

2 3 0.001, 0.005, 0.010, 0.020

2 5 0.001, 0.005, 0.010, 0.020

3 3 0.001,
0.050

0.005, 0.010, 0.020,

3 5 0.020, 0.050, 0.100

5 5 0.001, 0.005, 0.010, 0.020,

0.050, 0.100, 0.200

5 10 0.050, 0.100, 0.200

10 10 0.001, 0.005, 0.010, 0.020,

RUNS AT EACH X
t

20

10

10

10

10

10

10

10

0.050, 0.100, 0.200

*
Each run consisted of 300 iterations of an LR failure test using fixed,

but randomly chosen values of X , X , subject to X.. + X = X .

21



4 -

3 -•

2

1 -.

10 15 20 25

Dependence of Mean and Variance of Bound
on Data Size

Figure 1

22



(x
2
/x

1
)

Expected Percentage of Data Lost

Figure 2

23



E(PL)

Curve

(1) 2 2

(2) 2 3

(3) 2 5

(4) 5 5

(5) 5 10

(6) 10 10

1.00.-

.80"

.60"

.40"

.20"

1.0 2.0
a2
yx

x
k
2
)

Expected Percentage of Data Lost

Figure 3

24



5%A

A.

1.2 -

1.0

0.8 -

0.6

0.4

0.2

-I
-

,05 .10 15 .20

Test of Simulation For Statistical Exactness

Figure 4

25



x
b

e(V
:<

1.2

1.0

0.8

:<

t

0.6

0.4

0.2

,05 10 .15

—r~

.20

Test of Simulation for Predicted Mean Bound

Figure 5

26



PL
E(PL)

1.0

0.8 -

0.6 -

0.4

0.2

|i i | i

\
'

I

1 1

.05 .10 .15 .20 A

Test of Simulation for Predicted Lost Data

Figure 6

t

27



7.0 -

6.0 -

5.0

4.0 -

3.0 -

2.0 -

1.0 -

cyxj
X
X

X

—I—

0.5

n

x

*

1.0
PL

Computed Bound (A ) Versus Percentage of Data lost (PI)

k
l

= 2
'

A
l

=
•
0005

'
k
2

= 2
'

X
2

=
-
0005

Figure 7

28



(x
b
/x

t
)

7.0-

X

<

X

X

X

X

X
X

X

X

6.0-

5.0-

4.0-

3.0-

2.0-

X

x.

X

X

X

X
X
X
X

X
X

*

K

X

x

<

1.0- *

x

1.00.5
PL

Computed Bound (A ) Versus Percentage of Data Lost (PL)
b

k = 2, \ = .0007, k
2

= 3, A
2

= .0003

Figure 8

29



<vv

7.0-

X

n

n

X
X

6.0-

5.0-

X
X

X

K
x

4.0-

3.0 -

2.0-

1.0 -

X

~l

—

0.5
I

PL
1.0

Computed Bound (X^) Versus Percentage of Data Lost (IL)

k
l

= 2> X
l

=
• 0007

»
k
2

= 2, X
2

= .0003

Figure 9

30



7.0 -

6.0 -

5.0 -

<W

4.0

3.0 -

2.0 -

1.0 .

X

X

X

X
X

X

X

X

n

K

v

X

X

X
X

X

X
X
X
X

8

*

X
X

X

0.5 1.0 ~L

Computed Bound (A, ) Versus lercentage of Data Lost (PL)

k
n

= 2, X. = .0005, k_ = 3, A. = .0005

Figure 10

31



7.0-

6.0-

5.0

4.0-

3.0-

2.0-

1.0-

(x
h
/x

t
)

»

X
X

X

X

X

X

*

X

X

X
X

n

X

X
X
X

X

X

X

X

X

5

X

—I—
0.5

X

X

X
X

X

X

X

*

X

1.0 PL

Computed Bound (X ) Versus Percentage of ftata Lost (?L)

k
l

= 2
'

X
l

=
- 0002

'
k
2

= 5
»

X
2 " * 0008

Figure 11

32



<yy
7. fH

6.0-

5.0-

4.0-

3.0'

2.0-

1.0-

X

n

X

X

X
X

X

X

X

—i—

0.5

X

V

X X

5
y

X
X

X X

X X

n
X

*

1.0 PL

Computed Bound (X, ) Versus Percentage of Data Lost (PL)

k
l

= 5
*

A
l

=
- 0007

'
k
2

= 5
'

A
2

= ,0°03

Figure 12

33



5% X

^ w x * >& x
X

S&%
X

X
x*

0.8-

0.6

0.4"

0.2-

T~
1.0

-1

—

0.2 0.4 0.6 0.8 12

Ratio of 5% Estimated Bound to True X

Prior Ordering

Figure 13

34



XX x

0.8 -

0.6

0.4 -

0.2

0.2

~\—
0.4

-1

—

0.6

~i

—

0.8 1.0
'12

/TO,Ratio of Mean Estimated Bounds with (X, )
b

/ru,
and without (X, ) Prior Ordering

Figure 14

35



*Xw !LX %f * *x XXx * X
X x>xA x

x x xx<
#* $xxx X

X

X
X

X

*
X

X
X

x
v *< x:£%>X*

XX

-J

—

0.6

n

—

0.8 1.0
12

Ratio of Mean Percentage of Data Lost with

Prior Ordering (PL°) to Expected Loss without Ordering (E(PL
U
))

Figure 15

36



m

y
X X

*

X< XXy X J« %
\ %<x g x

X

0.8-

0.6-

0.4"

0.2

0.2

~T 1

—

0.4 0.6 0.8 1.0 12

Ratio of Actual Magnitudes of Standard Deviations

With and Without Prior Ordering

Figure 16

37



R

1.2

0.6 -

0.4
"

0.2 -

—r~

0.2
"I

0.6

—|—

0.80.4

Ratio of Relative Magnitude* of Standard Deviations

With and Without Prior Ordering

1.0
'12

Figure 17

38



DISTRIBUTION LIST

No. Copies

1. ease Documentation Center 12

Station
Alexandria, Virginia 22314

2. rary, Code 0212 2

1 Postgraduate School
Monterey, California 93940

3. Dr. A.L. Schoenstadt, Code 53Zh 10

Department of Mathematics
Naval Postgraduate School
Monterey, California 93940

4. Chief of Naval Research 2

Department of the Navy
800 N. Quincy St.

Arlington, Virginia 22217

5. Dean of Research 2

Naval Postgraduate School
Monterey, California 93940

6. Professor Toke Jayachandran 3

Office of Naval Research, Code 431
800 N. Quincy St.

Arlington, Virginia 22217

7. Esary, Code 55Ey 1

Naval Postgraduate School
Monterey, California 93940

8. Dean W.M. Woods, Code 500 1

Naval Postgraduate School
Monterey, California 93940

9. Dr. Janet Mhyre 1

Mathematics Department
Claremont Men's College
Claremont, California 91711

39



DUDLEY KNOX LIBRARY - RESEARCH REPORTS

5 6853 01067282 7


